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Flow through porous media is ubiquitous, occurring from large geological scales down to
the microscopic scales. Several critical engineering phenomena like contaminant spread,
nuclear waste disposal and oil recovery rely on accurate analysis and prediction of these
multiscale phenomena. Such analysis is complicated by inherent uncertainties as well as
the limited information available to characterize the system. Any realistic modeling of
these transport phenomena has to resolve two key issues: (i) the multi-length scale varia-
tions in permeability that these systems exhibit, and (ii) the inherently limited information
available to quantify these property variations that necessitates posing these phenomena
as stochastic processes.

A stochastic variational multiscale formulation is developed to incorporate uncertain
multiscale features. A stochastic analogue to a mixed multiscale finite element framework
is used to formulate the physical stochastic multiscale process. Recent developments in lin-
ear and non-linear model reduction techniques are used to convert the limited information
available about the permeability variation into a viable stochastic input model. An adaptive
sparse grid collocation strategy is used to efficiently solve the resulting stochastic partial dif-
ferential equations (SPDEs). The framework is applied to analyze flow through random het-
erogeneous media when only limited statistics about the permeability variation are given.

� 2008 Elsevier Inc. All rights reserved.
1. Introduction

Thermal and hydrodynamic transport in random heterogeneous media are ubiquitous processes occurring in various
scales ranging from the large scale (e.g. geothermal energy systems, oil recovery, geological heating of the earth’s crust)
to smaller scales (e.g. heat transfer through composites, polycrystals, flow through pores, inter-dendritic flow in solidifica-
tion, heat transfer through fluidized beds). There has been increasing interest in reliably modeling and predicting the ther-
mal and hydrodynamic behavior of such media. One of the challenging mathematical issues in the analysis of transport
through heterogeneous random media is the multiscale nature of the property variations. Complete response evaluation
involving full-scale spatial and temporal resolution simulations of multiscale systems is extremely expensive. Computational
techniques have been developed that solve for a coarse-scale solution by defining an appropriate coarse-scale problem that
captures the effect of the subgrid-scales [1]. The more popular techniques developed for such upscaling fall under the
category of multiscale methods viz. the variational multiscale (VMS) method (operator upscaling) [2–7], the heterogenous
. All rights reserved.
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multiscale method [8,9] and the multiscale finite element method [10–14]. Further related techniques are presented in
[15,16]. These computationally scalable techniques have resulted in the development of black box simulators that have been
used with significant success in the solution of large scale transport problems in complex geometries.2

The multiscale analysis of such systems inherently assumes that the complete multiscale variation of the permeability is
known. This assumption limits the applicability of these frameworks since it is usually not possible to experimentally deter-
mine the complete structure of the media at smaller scales [17]. In most cases, only a few statistical descriptors of the prop-
erty variation or the property variation in small test regions can be experimentally determined. This limited information
about the permeability necessitates viewing the permeability variation as a random field that satisfies certain statistical
properties/correlations. This naturally results in describing the physical phenomena as stochastic partial differential equa-
tions (SPDEs) instead of partial differential equations (PDEs).

In the past decade, there has been tremendous progress in posing and solving SPDEs. Several techniques like Generalized
Polynomial Chaos expansion [18–24], wavelet expansion and collocation based strategies [25–28] have been developed to
solve SPDEs. These techniques have been applied with significant success to solve single scale stochastic problems. In recent
years, there has been significant interest in coupling deterministic multiscale methods with techniques in stochastic analysis
to investigate critical multiscale systems in the presence of uncertainties.

There are two key questions that have to be sequentially answered to construct a stochastic multiscale framework that
models transport phenomena only given limited information: (1) techniques to convert/encode limited statistical informa-
tion and/or sampled property values into a viable (stochastic) input model for the (multiscale) permeability variation and (2)
given this input multiscale stochastic model, techniques to solve the stochastic multiscale equations.

The construction of viable stochastic input models based on limited data is a very interesting and challenging mathemat-
ical problem. The recent work in [29] looks at developing probabilistic models of random coefficients in SPDEs using a max-
imum likelihood framework. The random domain decomposition (RDD) [30,31] method was used to construct probabilistic
models for highly variable permeability distributions [32]. All these techniques are very specialized to particular applications
and require some amount of expert knowledge in allocating probability distributions. In [33,34], we have recently developed
techniques to utilize statistical information about the variability in the property of random media and produce viable low-
dimensional descriptors as inputs to the SPDE describing the evolution of the dependent variable.

The basic idea to solve the stochastic multiscale set of equations is to extend deterministic multiscale methods to their
stochastic analogues. Spectral strategies to pose and solve stochastic multiscale problems have been investigated by Xu [35]
and Asokan and Zabaras [36]. Collocation based strategies to pose and solve stochastic multiscale problems have recently
been developed in [33]. The key is to define appropriate ways to link the subgrid-scale stochastic variation with the
coarse-scale stochastic variation of the dependent variables.

In the present work we are interested in analyzing flow through random heterogeneous media given limited statistical
information about the multiscale permeability variation. We link stochastic analysis and multiscale methods to investigate
this problem. The key contributions of the current work are: (1) formulation of a stochastic variational multiscale method to
incorporate the effects of stochastic multiscale permeability variations. (2) Utilizing various data-driven strategies to encode
the limited information and subsequently construct a finite-dimensional representation of the multiscale permeability var-
iation. (3) Utilizing an adaptive sparse grid collocation strategy to effectively solve the multiscale SPDEs. Even though (2) and
(3) have been developed elsewhere, this is the first time (to our best knowledge) that data-driven model generation and fast
adaptive collocation strategies have been coupled with a consistent stochastic variational multiscale framework. This
sequential development – from limited data to plausible stochastic models to a computationally efficient solution strategy
– also serves as a roadmap for seamlessly constructing stochastic multiscale frameworks using deterministic solvers.

2. Problem definition

Fig. 1 shows a schematic of the problem of interest. Denote the domain as D � Rnsd , where nsd is the number of spatial
dimensions. This paper deals with developing (stochastic multiscale) methods for the simulation of pressure and (phase)
velocities in porous media flow across this domain. Stochastic multiscale structures in the domain are reflected in the coef-
ficients of the governing partial differential equations. Assuming incompressibility, the problem reduces to a variable-coef-
ficient elliptic equation. Without loss of generality, we will study the following elliptic problem [37] describing steady-state
flow through heterogeneous porous media:
2 In t
problem
The num

3 Mo
loss of
r � u ¼ f ; ð1Þ
u ¼ �krp; ð2Þ
where p is the pressure, u is the flow velocity and k is the permeability.3 The characteristic length scale of D is L. Denote the
length scale of permeability fluctuation as l. In the problems that we are interested in solving, the characteristic length of the
domain is a couple of orders of magnitude larger than the characteristic length scale of the permeability variations, l� L.
he context of flow through porous media, these strategies are usually applied to geological scale domains and petro-physical property models. In such
s, the property variations are homogenized over individual cell blocks. Each individual cell is large enough for the concept of the RVE to be valid [17].
ber of such cells in the geological domain necessitates multiscaling.

re precisely, k is the permeability divided by the fluid viscosity. Since we assume the fluid viscosity is uniform, k refers to a scaled permeability, without
generality. u is the volumetric flow density.



Fig. 1. Schematic of the problem of interest.
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The variables ðuðxÞ; pðxÞÞ depend on the (multiscale) permeability distribution, kðxÞ in the domain. However, the complete
permeability distribution in unknown. Only some limited statistics and/or snapshots of the permeability are given. This lim-
ited information available to characterize the permeability necessitates assuming that the permeability is a realization of a
random field. This is mathematically stated as follows: Let X be the space of all allowable permeability variations. This is our
event space. Every point k ¼ fkðx;xÞ;8x 2 D;x 2 Xg in this space is equiprobable. Consequently, we can define a r-algebra
F and a corresponding probability measure P : F ! ½0;1� to construct a complete probability space ðX;F ;PÞ of allowable
permeability. To make this abstract description amenable to numerical simulation, a finite-dimensional approximation/rep-
resentation [38] of this abstract set is necessary. Various data-driven strategies to represent the set X as a finite-dimensional
function are discussed in Section 4. The stochastic permeability is represented as
kðx;xÞ � kðx;Y1; . . . ;YNÞ � kðx;YÞ; ð3Þ
where Y1; . . . ;YN are uncorrelated random variables. Usually, the permeability field is spatially correlated [17] and is as-
sumed to be stationary. The pressure and velocity are then characterized by:
r � uðx;YÞ ¼ f ðxÞ; ð4Þ
uðx;YÞ ¼ �kðx;YÞrpðx;YÞ; ð5Þ
where the source/sink term f ðxÞ is taken to be deterministic. Furthermore, f is also assumed to not have a multiscale char-
acter. These assumptions are simply to make the subsequent developments clear. It is fairly straightforward to account for
uncertainties in f as well as to analyze the effects of a multiscale f [39].

For the problem to be physically relevant, we assume that the stochastic permeability satisfies some conditions,
particularly:

Assumption 1. k is positive and uniformly coercive:
9kmin; kmax 2 ð0;1Þ :

Pðx 2 X : kðx;xÞ 2 ½kmin; kmax�; 8x 2 DÞ ¼ 1:
ð6Þ
As stated earlier, the abstract representation of kð:;xÞ in X is replaced by a more tractable finite-dimensional representation
kð:;YÞ, with Y 2 C � RN . Corresponding to the probability measure P : F ! ½0;1�, we denote the equivalent probability mea-
sure q : C! ½0;1�.

The governing equations for the velocity and pressure are represented in mixed form as follows:
k�1uþrp ¼ 0; ð7Þ
r � u ¼ f : ð8Þ
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The above constitutive and conservation equations are supplemented with the following boundary conditions
p ¼ po on oDp; ð9Þ
u � n ¼ uo on oDu: ð10Þ
Without loss of generality, we assume that the boundary conditions are deterministic and that the Neumann condition is
homogeneous [39], uo ¼ 0 on oDu.

The basic idea is to solve the problem on a coarse spatial discretization, Dc , while taking into account the subgrid-scale
variation in the stochastic permeability. In the next section, we detail a stochastic extension to the variational multiscale
method to solve this problem. The stochastic multiscale formulation is based on the multiscale formulation detailed in
the papers by Juanes and Dub [39] and Arbogast and Boyd [40]. The augmentation of the deterministic multiscale formula-
tion to its stochastic counterpart mainly depends on two straightforward developments: (a) defining the appropriate sto-
chastic function spaces (both finite- and infinite-dimensional), and (b) defining the appropriate localization assumptions.
For brevity of presentation, we will concentrate on these two aspects. The interested reader in referred to [39,40] for other
details.

3. Stochastic variational multiscale formulation

We now introduce the appropriate function spaces in which the velocity and pressure lie. In contrast to their determin-
istic counterparts, the velocity and pressure defined here are stochastic processes. Most dependent variables one encounters
in stochastic analysis are usually random processes [41–44] that are defined in product spaces. These variables (for instance
pðx;YÞ) usually have one structure in the stochastic space pð:;YÞ and another in the physical space pðx; :Þ. The numerical anal-
ysis/approximation [41,42] of such functions can be performed by defining the appropriate tensor product spaces. The inter-
ested reader is referred to [41–44] for insightful discussions on the definitions of these product spaces. Following [41,42], we
define appropriate function spaces that encode variations of the function in the physical domain D and in the stochastic
space C.

Remark 3.1. We will consider stochastic functions that belong to S, the space of all square integrable functions, with
measure qðYÞ. Given a deterministic function space A, its stochastic counterpart is the tensor product space A � S � A.

We introduce the following tensor product function spaces:
W � S �W � L2ðCÞ � L2ðDÞ; with; ðp;pÞ � jjpjj2W :¼
Z

C
dqðYÞ

Z
D

p2dx; ð11Þ

H � S � H � L2ðCÞ � Hðdiv ;DÞ; with; ðu;uÞ � jjujj2H :¼
Z

C
dqðYÞ

Z
D

u � udx; ð12Þ

V ¼ fu : u 2 H;uð:;YÞ � n ¼ 0 on oDu;8Y 2 Cg: ð13Þ
The problem defined by Eqs. (7) and (8) along with the boundary conditions Eqs. (9) and (10) can be written in mixed var-
iational form: Find ðu; pÞ 2 V 	W such that
ðv ; k�1uÞ � ðr � v; pÞ ¼ �hv � n; poi; 8v 2 V; ð14Þ
ðw;r � uÞ ¼ ðw; f Þ; 8w 2 W; ð15Þ
where hf ; gi is defined as
R
C dqðYÞ

R
oDp

fgdx and ðf ; gÞ ¼
R
C dqðYÞ

R
D fgdx.

3.1. Variational multiscale approach

The exact solution u is assumed to be made up of contributions [5] from two different (spatial) scales namely, the coarse-
scale solution ucðx; :Þ that can be resolved using a coarse (spatial) mesh and a subgrid solution uf ðx; :Þ:
u ¼ uc þ uf ; p ¼ pc þ pf : ð16Þ
This additive sum decomposition induces a similar decomposition for the spatial part of full-scale tensor product function
spaces into a direct sum of a coarse-scale and a subgrid tensor product function spaces, i.e.
W ¼ Wc 
W f ; H ¼ Hc 
Hf ; V ¼ Vc 
 V f : ð17Þ
The main idea is to develop models for characterizing the effect of the subgrid solution uf ðx; :Þ on the coarse-scale solution
and to subsequently derive a modified coarse-scale formulation that only involves ucðx; :Þ. The additive decomposition pro-
vides a way of splitting the full-scale problem given by Eqs. (14) and (15) into a coarse-scale problem and a subgrid problem.
Testing against the coarse-scale test functions results in the coarse-scale variational problem: Find ðuc; pcÞ 2 Vc 	Wc such
that
ðvc; k
�1ðuc þ uf ÞÞ � ðr � vc; ðpc þ pf ÞÞ ¼ �hvc � n;poi; 8vc 2 Vc; ð18Þ

ðwc;r � ðuc þ uf ÞÞ ¼ ðwc; f Þ; 8wc 2 Wc: ð19Þ
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Similarly testing against the subgrid test functions results in the subgrid variational problem: Find ðuf ; pf Þ 2 V f 	W f such
that
ðv f ; k
�1ðuc þ uf ÞÞ � ðr � v f ; ðpc þ pf ÞÞ ¼ �hv f � n; poi; 8v f 2 V f ; ð20Þ

ðwf ;r � ðuc þ uf ÞÞ ¼ ðwf ; f Þ; 8wf 2 W f : ð21Þ
Note that both the coarse-scale variational equations Eqs. (18) and (19) as well as the subgrid variational equations Eqs.
(20) and (21) contain coarse and subgrid variations in the dependent variable (uc; pc; uf ; pf ). The key is to solve Eqs. (20)
and (21) for uf and construct a functional representation of the subgrid variation, uf and pf in terms of the coarse-scale
variation, uc:
uf ¼ UðucÞ; pf ¼ WðucÞ: ð22Þ
This representation can be subsequently used to remove explicit dependence of uf and pf in Eqs. (18) and (19). The key prob-
lem is now to solve Eqs. (20) and (21). But these equations are defined over the complete global domain, D. Solving the sub-
grid problem on the global domain is equivalent to solving the full-scale problem itself. To make the problem
computationally tractable, some localization assumptions have to be made to convert this global subgrid problem into a
set of local subgrid problems [39].

3.2. Finite element approximation spaces

Before defining the localization assumptions, the finite element approximation spaces at the full-scale and coarse-scale
are first defined. As stated before (Remark 3.1), the stochastic function spaces are simply tensor product spaces of S with the
corresponding deterministic spaces.

3.2.1. Full-scale approximation spaces
Let Vh andWh be finite-dimensional subspaces of the spatial part of the corresponding continuum spaces V andW. That is
Wh ¼ S �Wh; Vh ¼ S � Vh: ð23Þ
Note that Wh and Vh should satisfy the discrete inf–sup condition [45]. Consider a partition, T h of the domain D into non-
overlapping elements ei, T h ¼

SNh
i¼1ei, where Nh is the number of elements of the grid. Following [39], define also the skeleton

of the partition, SPh ¼
SMh

a¼1ca, where Mh is the number of element faces denoted by ca. The partition T h is denoted as the
full-scale grid, on which the multiscale permeability is defined. The deterministic finite element approximation space for
the velocity, Vh is taken to be the lowest-order Raviart-Thomas [46,39] space, RT0ðT hÞ, and the deterministic finite element
approximation space for the full-scale pressure, Wh is taken to be the space of piece-wise constants on the full-scale mesh,
P0ðT hÞ.

3.2.2. Coarse-scale approximation spaces
Consider a coarse-scale partition of the domain, D. Denote this partition as T c ¼

SNc
i¼1Ei. Denote by SPc ¼

SMc
a¼1Ka the asso-

ciated skeleton of the coarse-scale discretization. Here, Nc is the number of coarse elements and Mc is the number of coarse
element faces denoted by Ka. Following [39], we also assume for simplicity that the partitions T h and T c – the full- and
coarse-grid, respectively – are nested, conforming, and consist of rectangular elements. Since Wh ¼ S � PoðT hÞ, choose the
coarse-scale pressure as belonging to the space of piecewise constant functions, Wh

c ¼ S � PoðT cÞ. The choice of the
coarse-scale velocity approximation spaces now has to be compatible with this choice of the pressure approximation. In
the analogous deterministic developments, the two choices for such spaces were the lowest-order Raviart-Thomas space
(used in [39]) and the Brezzi-Douglas-Marini space of order 1 (used in [3]). We choose to utilize the stochastic analogue
to the lowest-order Raviart-Thomas space in the current work. We can now associate the coarse-scale velocity with the low-
est-order Raviart-Thomas space, RT0ðT cÞ as:
Vh
c ¼ S � Vh

c ; Vh
c ¼ uc : uc ¼

XMc

a¼1

Nc
auc

a; u
c
a ¼ 0 8Ka 2 oDu

( )
; ð24Þ
where Vh
c is the finite-dimensional approximation to the coarse-scale continuum space Vc . Here, Nc

a is the RT0 basis function
associated with face Ka, and uc

a is the corresponding degree of freedom (the integrated coarse-flux through Ka [39]). The
coarse-scale pressure approximation is piecewise constant on the coarse-mesh, P0ðT cÞ:
Wh
c ¼ S �Wh

c ; Wh
c ¼ wc : wc ¼

XNc

i¼1

/c
i wc

i

( )
; ð25Þ
where Wh
c is the finite-dimensional approximation to the coarse-scale continuum space Wc . Here, /c

i is the pressure basis
function for the coarse element i, which is equal to one in element Ei and zero in all other elements. wc

i is the corresponding
pressure degree of freedom (the average pressure in coarse element Ei).
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3.2.3. Subgrid-scale approximation spaces
The subgrid-scale velocities have to accurately mimic the full-scale velocities. To ensure this, they are restricted to belong

to the lowest-order Raviart-Thomas space on the full-scale grid within each coarse element [39]. Denote by Ei;h ¼ T hðEiÞ the
full-scale grid defined over the coarse element Ei. The subgrid-scale velocity field defined on each coarse element satisfies the
condition
Vh
f ;i � RT0ðEi;hÞ; ð26Þ

Vh
f ;i ¼ S � Vh

f ;i; ð27Þ
where Vh
f ;i is the finite-dimensional approximation to the subgrid-scale continuum space V f , constrained to a coarse element

Ei. The elements of Vh
f ;i can naturally be extended to all of D by zero. The global subgrid velocity space can then be defined as

the direct sum of the subgrid spaces over the coarse elements
Vh
f ¼ 


Nc

i¼1
Vh

f ;i: ð28Þ
Similarly, the subgrid pressure space is restricted to belong to the space of piecewise constant functions on each coarse
element
Wh
f ;i � P0ðEi;hÞ; ð29Þ

Wh
f ;i ¼ S �Wh

f ;i; ð30Þ
where Wh
f ;i is the finite-dimensional approximation to the subgrid-scale continuum space W f , constrained to a coarse ele-

ment Ei. The elements of these spaces are extended to zero functions to the entire spatial domain [39], D, and the subgrid
pressure space is defined as
Wh
f ¼ 


Nc

i¼1
Wh

f ;i: ð31Þ
3.3. Localization assumptions

Having defined the appropriate finite element approximation spaces, we now move to the problem of reducing the global
subgrid problem (defined by Eqs. (20) and (21)) into a set of local subgrid problems defined over the coarse elements Ei.

The key localization assumption in the construction of the multiscale framework is to ensure that the approximation is
locally conservative at both scales [39]. This implies that the discrete version of the conservation equation is satisfied on each
element in the coarse and full-scale grids. Furthermore, we also assume that this condition is satisfied not in a distributed
sense, but for each stochastic realization (i.e. point-wise in stochastic space). This leads to the following condition
ðwc;r � ucÞEi
¼ ðwc; f ÞEi

; ð32Þ
where ð:; :ÞEi
is the corresponding inner product defined over the coarse element Ei. This condition (in its strong, point-wise

form) is equivalent to [39]
r � uc ¼ Pcf ; ð33Þ
where Pcf is the projection of the source/sink term onto the space Wc of piecewise constants on the coarse-grid. As stated in
the beginning of this section, we assume that the sourse/sink function does not display a multiscale nature, i.e. it is equal to
its projection on the space of coarse-scale pressures ðf ¼ Pcf ). Substituting Eq. (32) into the coarse-scale conservation equa-
tion Eq. (19) results in
ðwc;r � uf ÞEi
¼ 0; 8Ei 2 T c: ð34Þ
Since wc is constant in each coarse element, using the divergence theorem and the assumption that this condition is valid
point-wise in stochastic space, results in the following condition on the subgrid velocities in each coarse element
Z

oEi

uf � ndx ¼ 0; 8Ei 2 T c: ð35Þ
Eq. (35) is the essential condition [39] that guarantees mass conservation at both scales and allows for the localization of the
subgrid problem. This localization assumption converts the global subgrid problem into a set of local Neumann problems
with boundary conditions defined by Eq. (35). Furthermore, the subgrid test function v f must satisfy v f � n ¼ 0 on oEi which
results in the following constraint
ðr � v f ; pcÞEi
¼ 0; 8Ei 2 T c: ð36Þ
Finally, we define the space of subgrid pressureWh
f as the orthogonal complement ofWh

c inWh (i.e. ðwf ;wcÞ ¼ 0). Now, since
Wh

C ¼ divVh
c , this results in an additional constraint
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ðr � vc;pf ÞEi
¼ 0; 8Ei 2 T c: ð37Þ
3.4. The subgrid problem

Using the localization assumption Eqs. (35)–(37) the localized subgrid problem can be defined as follows: For each coarse
element, Ei ¼ 1; . . . ;Nc , find ðuf ; pf Þ 2 Vh

f ;i 	Wh
f ;i, such that
ðv f ; k
�1uf ÞEi

� ðr � v f ; pf ÞEi
¼ �ðv f ; k

�1ucÞEi
; 8v f 2 Vh

f ;i; ð38Þ
ðwf ;r � uf ÞEi

¼ ðwf ; f �r � ucÞEi
; 8wf 2 Wh

f ;i: ð39Þ
Since f ¼ r � uc (assumption that the sourse/sink exhibits no multiscale character), the RHS of Eq. (39) is identically zero. The
interested reader is referred to [39] for detailed discussion of the case when the source/sink function displays multiscale
behavior where deterministic analysis is provided. It is straightforward to extend those arguments to the stochastic case.
Note that given uc and the appropriate boundary conditions, the above problem has a unique solution for the subgrid veloc-
ity and pressure. The global subgrid-scale solution ðuf ; pf Þ is obtained by patching together the solutions on each coarse
element.

3.5. Multiscale basis functions

Eqs. (38) and (39) represent the subgrid-scale velocity and pressure in terms of the coarse-scale velocity. Recollect that
the coarse-scale velocity is represented in terms of the RT0 basis functions (Eq. (24)) and the Mc degrees of freedom as
uc ¼

PMc
a¼1Nc

auc
a. We therefore represent the subgrid-scale variation in terms of the finite number of coarse-scale degrees

of freedom [39] as
uf ¼
XMc

a¼1

N f
auc

a; pf ¼
XMc

a¼1

/f
auc

a: ð40Þ
The above equations transform the problem of finding the function UðucÞ and WðucÞ (defined in Eq. (22)) into finding the
subgrid scale basis functions ðN f

a;/
f
aÞ associated with each coarse-scale degree of freedom. For computational efficiency,

the sum of the coarse-scale and subgrid-scale components is calculated instead (defined as the multiscale basis function
which represents the multiscale velocity)
u ¼
XMc

a¼1

ðNc
a þ N f

aÞuc
a ¼

XMc

a¼1

Nms
a uc

a: ð41Þ
The multiscale basis functions are associated with each coarse-scale interface Ka. The multiscale basis functions are con-
structed based on defining the Green’s function to the subgrid Eqs. (38) and (39) [5,6]. In the context of deterministic mixed
multiscale methods, various authors have constructed these multiscale basis functions [3,13,14]. We utilize the determinis-
tic definition of the multiscale basis functions used in [37,39] to define the stochastic multiscale basis functions. Each mul-
tiscale basis function is the solution to a flow problem restricted to a pair of adjacent coarse elements that share a common
coarse interface. The course terms are specified in such a way that the flow through the interface is identically one (based on
the Green’s function idea). It is straightforward to extend this definition of the multiscale basis function to the case when the
permeability is stochastic.

The stochastic multiscale basis functions ðNms
a ;/ms

a Þ for the interface Ka (which is shared by the coarse elements Ei and Ej)
are the solution to the following stochastic local problem:
k�1Nms
a þr/ms

a ¼ 0; in Ei [ Ej; ð42Þ
Nms

a � n ¼ 0; on oðEi [ EjÞ; ð43Þ

r � Nms
a ¼

þkðx; :Þ=
R

Ei
kðx; :Þdx; if x 2 Ei;

�kðx; :Þ=
R

Ej
kðx; :Þdx; if x 2 Ej:

(
ð44Þ
3.6. The coarse-scale problem

We next turn to the coarse-scale variational equations. Based on the localization assumptions Eqs. (35)–(37), the coarse-
scale variational equations Eqs. (18) and (19) reduce to the following: Find ðuc; pcÞ 2 Vh

c 	Wh
c , such that
ðvc; k
�1ucÞ þ ðvc; k

�1uf Þ � ðr � vc;pcÞ ¼ �hvc � n;poi; 8vc 2 Vh
c ; ð45Þ

ðwc;r � ucÞ ¼ ðwc; f Þ; 8wc 2 Wh
c : ð46Þ
Following [39], the problem is expressed in its equivalent symmetric form by defining the stochastic multiscale velocity
space, Vh

ms and stochastic multiscale pressure spaces Wh
ms as follows:
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Vh
ms ¼ S � Vh

ms; Vh
ms ¼ ums : ums ¼

XMc

a¼1

Nms
a uc

a; u
c
a ¼ 0 8Ka 2 oDu

( )
; ð47Þ

Wh
ms ¼ S �Wh

ms; Wh
ms ¼ wms : wms ¼

XNc

i¼1

/c
i wc

i þ
X

a

~/ms
a uc

a

 !( )
; ð48Þ
where ~/ms
a ¼ /ms

a � 1
jEi j
R

Ei
/ms

a dx.

With this definition of the finite-dimensional function spaces, the stochastic coarse-scale problem can be written as: Find
ðums; pmsÞ 2 Vh

ms 	Wh
ms, such that
ðvms; k
�1umsÞ � ðr � vms;pmsÞ ¼ �hvms � n; poi; 8vms 2 Vh

ms; ð49Þ
ðwms;r � umsÞ ¼ ðwms; f Þ; 8wc 2 Wh

c : ð50Þ
Once the coarse-scale variables are solved, the multiscale velocity and pressure can be reconstructed (if necessary) by resort-
ing to the additive decomposition Eq. (16). The subgrid part is obtained by a linear combination of the coarse-scale fluxes and
the subgrid-scale basis functions.

3.7. The stochastic multiscale framework

The abstract framework to solve the stochastic multiscale problem defined by Eqs. (4) and (5) is given in Fig. 2.
As seen in Fig. 2, the key steps involved are

� From limited data determine the multiscale stochastic permeability. This requires data-driven strategies to construct via-
ble finite-dimensional representation of the stochastic permeability. Different techniques are discussed in Section 4.

� Find the stochastic multiscale basis functions for each coarse element interface by solving Eqs. (42)–(44).
� Use these multiscale basis functions to solve for the stochastic coarse-scale velocities and pressure given by Eqs. (49) and

(50). Adaptive techniques to solve the above set of SPDEs are discussed in Section 5.

4. Representing the multiscale stochastic permeability: Constructing low-dimensional models

The first step towards solving the SPDEs is to obtain some form of numerical representation of the input random pro-
cesses – i.e. the stochastic permeability, kðx;xÞ. A finite-dimensional representation of the abstract probability space is a
necessary prerequisite for developing any viable framework to solve Eqs. (4) and (5).

4.1. The Karhunen-Loève expansion

In many situations, extensive experimental studies are available and semi-variograms of permeability distribution are
constructed [17,47]. Furthermore, some notion of the mean permeability variation is also available. The existence of some
correlation structure of the permeability field provides an elegant way of representing it as a finite set of uncorrelated ran-
dom variables. The Karhunen-Loève expansion can be used to convert these experimental statistics into a viable low-dimen-
sional stochastic model of the permeability variation.

The KL expansion can be written as
kðx;xÞ ¼ Eðkðx;xÞÞ þ
X1
i¼0

ffiffiffiffi
ki

p
fiðxÞYiðxÞ; ð51Þ
Get input stochastic model

Compute the stochastic multiscale 
basis functions for each coarse 

element

Compute the stochastic coarse-scale 
fluxes

Set coarse and fine discretization

Utilize limited information to 
construct a finite dimensional 

representation of the multiscale 
permeability

Utilize adaptive strategies to 
solve the stochastic partial 

differential equations

Fig. 2. The stochastic multiscale framework.
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where Eðkðx;xÞÞ denotes the mean of the process and fYiðxÞg1i¼0 forms a set of uncorrelated random variables whose distri-
bution has to be determined [48]. ðki; fiðxÞÞ1i¼0 form the eigenpairs of the covariance function:
4 Ano
dimens
Z
D

Rhhðx1; x2Þfiðx2Þdy2 ¼ kf1ðx1Þ: ð52Þ
The chief characteristic of the KLE is that the spatial randomness has been decomposed into a set of deterministic functions
multiplying random variables. These deterministic functions can also be thought of as representing the scales of fluctuations
of the process. The KLE is mean-square convergent to the original process kðx;xÞ. More interestingly, the first few terms of
this expansion represent most of the process with arbitrary accuracy. The expansion in Eq. (51) is typically truncated to a
finite number of summation terms, N.

4.2. Non-KLE based data-driven methods

As long as variograms and other correlation functions (which can be expanded via KLE) are available, using the KLE pro-
vides the simplest way of constructing a finite-dimensional descriptor of the stochastic permeability. In cases where corre-
lation statistics vary spatially across the domain (or when the KLE cannot be used to generate a descriptor), one can utilize
geostatistical methods [17,47] to construct plausible realizations of the permeability. Each plausible permeability distribu-
tion is given at the nodal points of the full-scale discretization of the domain. Denote such permeability realizations as
kD ¼ fkðx1Þ; . . . ; kðxNh

Þg, where Nh is the number of nodal points in the full-scale discretization of the domain. kD belongs
to X, the set of plausible permeability distributions:
X ¼ fkD 2 RNh jkDsatisfies the experimental statistics S ¼ fS1; . . . ; Spgg: ð53Þ
Data-driven strategies can be utilized to incorporate these plausible realizations into a global descriptor of the stochastic
permeability.4 Depending on the number of such realizations (which is determined by accuracy and computational complex-
ity considerations), two data-driven techniques for representing the stochastic permeability can be utilized. If the number of
plausible data sets is limited (�10–100), it is possible to use linear model reduction ideas (i.e. Principal Component Analysis
(PCA), Proper Orthogonal Decomposition (POD)) to construct a low-dimensional stochastic input model for the permeability
variation. On the other hand, when the number of realizations available is fairly large, one can utilize non-linear model
reduction strategies (manifold learning algorithms) to construct low-dimensional representations.

4.2.1. Linear model reduction strategies
Using geostatistical methods [17,47], it is possible to construct a finite set, kD1 ; . . . ;kDM , of plausible permeability distribu-

tions in the domain that satisfy the experimental data. Note that we denote each realization of the permeability in the do-
main kDi as a vector of length Nh. If the number, M, of such reconstructed vectors is not large (M <� 100), linear model
reduction strategies like PCA and POD can be utilized to encode the information contained in the M plausible snapshots
of the permeability distribution.

The average permeability vector is computed as hkDi ¼ 1
M

PM
i¼1kDi . The average permeability vector, hkDi is then subtracted

from all the permeability vectors as kDi  kDi � hk
Di for i ¼ 1; . . . ;M. The eigenvectors UðkÞ of the Nh 	 Nh covariance matrix

C ¼ 1
M

PM
i¼1kDi kDi satisfying the equation
CUðkÞ ¼ kkUðkÞ; k ¼ 1; . . . ;Nh; ð54Þ
along with the eigenvalues kk are computed. This set of eigen-images and eigenvalues form the best basis to represent the
permeability vector [49,50]. The first N eigen-images (usually N � M) representing most of the energy spectrum of the
decomposition is chosen. Any random (plausible) permeability vector (I) belonging to the space of allowable permeability
distributions X can then be represented as a unique linear combination of the N eigen-images:
I ¼ hkDi þ
XN

i¼1

YiU
ðiÞ; I 2 X; Y � ðY1; . . . ; YNÞ 2 RN: ð55Þ
This transformation serves as the low-dimensional representation that can be used as a stochastic input model for the per-
meability. Note, however, that not every Y 2 RN results in a plausible permeability distribution [33] (i.e. the transformation
is not surjective). This can be accounted for by reducing the domain of variability of Y to make the transformation surjective.
Such ‘subspace reducing’ methods are detailed in [33].

4.2.2. Non-linear model reduction strategies
The PCA based model reduction scheme constructs the closest linear subspace of the high-dimensional input space. This is

a fairly good approximation when the number of data sets is limited. But as the amount of data available increases, PCA
based techniques tend to consistently over-estimate the actual dimensionality of the space [34]. This is primarily due to
ther way is to first build a facies model [32] and then perform a KLE within each facie. This could however enormously increase the total (stochastic)
ionality of the problem.
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the fact that the space of all plausible permeability distributions (X) is a non-linear space. Non-linear transformation strat-
egies offer the possibility of constructing optimal low-dimensional representations of this space. As before, assume that M
plausible permeability vectors are available. Using the unordered data fkDi g

M
i¼1, the problem of interest is to find a low-

dimensional parametrization of X, i.e. a set C 2 RN , N � Nh, such that there is a one-to-one correspondence between X
and C.

The solution strategy is based on the so-called principle of ‘manifold learning’ [34]. The basic strategy is to show that this
set of unordered points lies on a manifold embedded in a high-dimensional space. That is, X is a manifold embedded in a
high-dimensional space. The mathematical framework is then to ‘unravel and smoothen’ this manifold and represent it as
a smooth low-dimensional curve, C. This ‘unravelling and smoothing’ corresponds to a topological transformation that preserves
some notion of the geometry of the manifold. By keeping specific geometrical features of the manifold invariant one can con-
struct a low-dimensional representation that is equivalent to the manifold. A natural choice of a geometric feature is the dis-
tance metric. This results in an isometric mapping to transform X into C. The important idea is that the distance that encodes
the geometric information about the non-linear manifold in the geodesic distance. The geodesic distance reflects the true
geometry of the manifold embedded in the high-dimensional space.

Construction of C reduces to finding a low-dimensional representation, fY ig of the given data points kD1 ; . . . ;kDM such that
fY ig is isometric to kD1 ; . . . ;kDM based on the geodesic distances between the points. The geodesic distance is approximately
computed via the concept of graph distance. The unknown geodesic distances in X between the data points are computed in
terms of a graph distance with respect to a neighborhood graph G constructed on the data points [34,51]. This data is com-
pactly stored as a matrix (denoted as M). The estimation of the low-dimensional representation of fkD1 ; . . . ;kDMg can now be
posed as:

Find a configuration of points fY1; . . . ;YMg, Y i 2 RN such that these points yield a Euclidean distance matrix whose elements are
identical to the elements of the geodesic distance matrix M (with N � Nh). That is, find fY igM

i¼1 such that kY i � Y jk  Mij. The
principle of Multi-dimensional scaling (MDS) can subsequently be used to compute the set of low-dimensional points that
best represent the high-dimensional points [52,53]. The MDS procedure essentially computes the eigen-decomposition of
the geodesic matrix and sets the low-dimensional points as linear combinations of the largest N eigenvectors of the geodesic
matrix. This provides a natural of constructing C from the M low-dimensional points fY igM

i¼1 [34]:
C � fY 2 RN jY 2 Convex hull ðY1; . . . ;YMÞg: ð56Þ
The intrinsic dimensionality N of the low-dimensional representation can be estimated by using a variant of the Breadwood–
Halton–Hammersley [54] theorem where N is linked to the rate of convergence of the length functional of the minimal span-
ning tree of the geodesic distance matrix of the unordered data points in the high-dimensional space [55–57]. For an arbi-
trary point Y 2 C � RN , the corresponding permeability distribution kðYÞ is constructed as a linear combination of the
nearest N input data points, i.e.
kðYÞ ¼
XN

i¼1

wikðY iÞ; ð57Þ
where fY igN
i¼1 are the N closest points to Y from the set of M points fY igM

i¼1, and the weights wi are inversely proportional to
the distance of Y from each point Y i as wi ¼ w=jjY � Yijj with 1=w ¼

PN
i¼11=jjY � Y ijj.

5. Solving stochastic partial differential equations

The above generated N-dimensional representation of the stochastic multiscale permeability is utilized as an input sto-
chastic model for the solution of SPDEs Eqs. (7) and (8). The stochastic input model is utilized in the solution of the stochastic
multiscale basis functions (defined by Eqs. (42)–(44)) which are the inputs to solve the stochastic coarse-scale variables Eqs.
(49) and (50).

We utilize an adaptive sparse grid collocation strategy for constructing the stochastic solution [25]. We briefly describe
the development of the adaptive sparse grid collocation strategy here. The interested reader is referred to our recent work in
[28].

The basic idea of the stochastic collocation method is to approximate the stochastic space using multi-dimensional inter-
polating functions. The method uses realizations of the function (i.e. the solution of the SPDE, ðuð:;Y iÞ; pð:;Y iÞÞ) at a finite set
of collocation points fYigM

i¼1 2 C. These finite number of deterministic solutions are used in constructing an interpolant of the
dependent stochastic variables ðuð:;YÞ; pð:;YÞÞ by using linear combinations of the solutions uð�;YiÞ. The two key question
issues to be resolved are (a) Find the optimal points to sample this multi-dimensional space, and (b) The mathematical
framework to construct the adaptive multi-dimensional interpolation once the sampling is performed.

The choice of the optimal interpolating sampling is a well studied problem [58]. For a one-dimensional function,
Clenshaw-Curtis points at the non-equidistant extrema of the Chebyshev polynomials [26,59] as well as the Newton-Cotes
formulae using equidistant support nodes have been shown to be optimal [28]. It is usually advantageous to choose the col-
location points in a nested fashion to obtain many recurring points with increasing order of interpolation [28]. Having cho-
sen the optimal set of points in one dimension, one can construct the interpolant approximation to a one-dimensional
function f as:
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U iðf Þ ¼
Xmi

j¼1

f ðYi
jÞ � ai

j; ð58Þ
with the set of support nodes Xi ¼ fYi
jjY

i
j 2 ½0;1� for j ¼ 1;2; . . . ;mig, where i 2 N, ai

j � ajðYi
jÞ 2 Cð½0;1�Þ are the interpolation

nodal basis functions, and mi is the number of elements of the set Xi. The nodal basis functions are usually Lagrange poly-
nomials [27,25]. The multi-dimensional interpolation function can then be constructed by using full tensor product of the
corresponding 1D interpolation rule.
ðU i1 � � � � � U iN Þðf Þ ¼
Xm1

j1¼1

� � �
XmN

jN¼1

f ðYi1
j1
; . . . ;YiN

jN
Þ � ðai1

j1
� � � � � aiN

jN
Þ: ð59Þ
Obviously, the number of support points grows very quickly as the number of stochastic dimensions increases in the full
tensor product case. This resulted in the development of the sparse grid interpolation method based on the Smolyak algo-
rithm [60].

5.1. Sparse grid interpolation

Using the Smolyak algorithm [60], univariate interpolation formulae are extended to the multivariate case by using tensor
products in a special way – providing an interpolation strategy with potentially orders of magnitude reduction in the number
of support nodes required. The Smolyak algorithm constructs the sparse interpolant, Aq;N , using products of 1D functions.

Consider the incremental interpolant, Di given by [28,25]
U0 ¼ 0; Di ¼ U i � U i�1: ð60Þ
The Smolyak interpolation Aq;N is then given by
Aq;Nðf Þ ¼
X
jij6q

ðDi1 � � � � � DiN Þðf Þ ¼ Aq�1;Nðf Þ þ
X
jij¼q

ðDi1 � � � � � DiN Þðf Þ ¼ Aq�1;Nðf Þ þ DAq;Nðf Þ; ð61Þ
with q P N, AN�1;N ¼ 0 and where the multi-index i ¼ ði1; . . . ; iNÞ 2 NN and jij ¼ i1 þ � � � þ iN . Here ik, k ¼ 1; . . . ;N, can be
thought of as the level of interpolation along the kth direction. The Smolyak algorithm essentially builds the interpolation func-
tion by adding a combination of 1D functions of order ik with the constraint that the sum total ðjij ¼ i1 þ . . .þ iNÞ across all dimen-
sions is less than q. The construction of the algorithm allows one to utilize all the previous results generated to improve the
interpolation (this is immediately obvious from Eq. (61)). By choosing appropriate points for interpolating the 1D function,
one can ensure that the sets of points Xi are nested (Xi � Xiþ1).

In the context of incorporating adaptivity, we have utilized the Newton-Cotes grid using equidistant support nodes [28].
By using equidistant nodes, it is easy to refine the grid locally. Furthermore, by using the linear hat function as the univariate
nodal basis function [61] one ensures a local support in contrast to the global support of using Lagrange polynomial (Eq.
(58)). This ensures that discontinuities in the stochastic space can be resolved.

5.2. From nodal basis to hierarchical basis

The important step to naturally incorporate adaptivity in the sparse grid collocation framework is to move from a nodal
basis definition of the interpolation formulae to a hierarchical basis definition of the interpolation functions [28]. We start
from the 1D interpolating formula Eq. (58) using nodal basis as discussed in the previous section. By the definition of Eq. (60),
we have Diðf Þ ¼ U iðf Þ � U i�1ðf Þ, with U iðf Þ ¼

P
Yi

j2Xi ai
j � f ðY

i
jÞ; andU i�1ðfÞ ¼ U iðU i�1ðfÞÞ, we obtain [28]
Diðf Þ ¼
X
Yi

j2Xi

ai
j � f ðY

i
jÞ �

X
Yi

j2Xi

ai
j � U i�1ðf ÞðYi

jÞ ¼
X
Yi

j2Xi

ai
j � ðf ðY

i
jÞ � U i�1ðf ÞðYi

jÞÞ; ð62Þ
and, since f ðYi
jÞ � U i�1ðf ÞðYi

jÞ ¼ 0;8Yi
j 2 Xi�1, we obtain
Diðf Þ ¼
X

Yi
j2Xi

D

ai
j � ðf ðY

i
jÞ � U i�1ðf ÞðYi

jÞÞ; ð63Þ
where Xi
D ¼ Xi n Xi�1. Clearly, Xi

D has mi
D ¼ mi �mi�1 points, since Xi�1 � Xi. The above equation is rewritten as [28]
Diðf Þ ¼
Xmi

D

j¼1

ai
j � ðf ðY

i
jÞ � U i�1ðf ÞðYi

jÞÞ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
wi

j

: ð64Þ
Here, we define wi
j as the 1D hierarchical surplus, which is just the difference between the function value at the current level and

the previous level. We also define the set of functions ai
j as the hierarchical basis functions. Now we apply the 1D Eq. (64) to

obtain the sparse grid interpolation formula for the multivariate case in a hierarchical form.
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DAq;Nðf Þ ¼
X
jij¼q

X
j2Bi

ðai1
j1
� � � � � aiN

jN
Þ � ðf ðYi1

j1
; . . . ; YiN

jN
Þ � Aq�1;Nðf ÞðYi1

j1
; . . . ;YiN

jN
ÞÞ: ð65Þ
where the multi-index set Bi :¼ fj 2 NN : Yik
jk
2 Xik

D for jk ¼ 1; . . . ;mik
D ; k ¼ 1; . . . ;Ng and we define
wi
j ¼ f ðYi1

j1
; . . . ;YiN

jN
Þ � Ajij�1;Nðf ÞðYi1

j1
; . . . ;YiN

jN
Þ; ð66Þ
as the hierarchical surplus, which is just the difference between the function value at the current point and interpolation
value from the coarser grid. As described in [28], we can work either in the nodal basis functional space or the hierarchical
basis space. For smooth functions, the hierarchical surpluses tend to zero as the interpolation level tends to infinity. On the
other hand, for non-smooth functions, steep gradients/finite discontinuities are indicated by the magnitude of the hierarchi-
cal surplus. The bigger the magnitude is, the stronger the underlying discontinuity is. Therefore, the hierarchical surplus is a
natural candidate for error control and implementation of adaptivity.

5.3. Adaptive sparse grid interpolation

Following [28], we set some notation first. The 1D equidistant points of the sparse grid can be considered as a tree-like
data structure as shown in Fig. 3. We can consider the interpolation level of a grid point Y as the depth of the tree DðYÞ. De-
note the father of a grid point as FðYÞ, where the father of the root 0.5 is itself, i.e., Fð0:5Þ ¼ 0:5.

The conventional sparse grid in the N-dimensional space can be reconsidered as
Hq;N ¼ Y ¼ fY1; . . . ;YNgj
XN

i¼1

DðYiÞ 6 q

( )
: ð67Þ
We denote the sons of a grid point Y ¼ ðY1; . . . ;YNÞ by
SonsðYÞ ¼ fS ¼ ðS1; S2; . . . ; SNÞjðFðS1Þ; S2; . . . ; SNÞ ¼ Y; or ðS1; FðS2Þ; . . . ; SNÞ ¼ Y; . . . ; ðS1; S2; . . . ; FðSNÞÞ ¼ Yg: ð68Þ
From this definition, it is noted that, in general, for each grid point there are two sons in each dimension, therefore, for a grid
point in a N-dimensional stochastic space, there are 2N sons. It is also noted that, the sons are also the neighbor points of the
father. The neighbor points are just the support nodes of the hierarchical basis functions in the next interpolation level [28].
By adding the neighbor points, we actually add the support nodes from the next interpolation level, i.e., we perform inter-
polation from level jij to level jij þ 1. Therefore, in this way, we refine the grid locally while not violating the developments of
the Smolyak algorithm Eq. (65).

The basic idea here is to use hierarchical surpluses as an error indicator to detect the smoothness of the solution and re-
fine the hierarchical basis functions ai

j whose magnitude of the hierarchical surplus satisfies jwi
jjP e. If this criterion is sat-

isfied, we simply add the 2N neighbor points of the current point from Eq. (68) to the sparse grid. It is noted that the growth
of the points scales linearly with increasing dimensionality rather than the Oð2NÞ tree-like scaling of the standard h-type
adaptive refinement as in a random element-based framework, e.g. ME-gPC. Let e > 0 be the parameter for the adaptive
refinement threshold. We propose the following iterative refinement algorithm beginning with a coarsest adaptive sparse
grid GN;N , i.e., we begin with the N-dimensional multi-index i ¼ ð1; . . . ;1Þ, which is just a point ð0:5; . . . ; 0:5Þ.

(1) Set level of Smolyak construction k ¼ 0.
(2) Construct the first level adaptive sparse grid GN;N .

� Calculate the function value at the point ð0:5; . . . ;0:5Þ;
� Generate the 2N neighbor points and add them to the active index set;
� Set k ¼ kþ 1:
(3) While k 6 kmax and the active index set is not empty:

� Copy the points in the active index set to an old index set and clear the active index set.
� Calculate in parallel the hierarchical surplus of each point in the old index set according to
0.5

0 1

0.25 0.75

0.125 0.375 0.625 0.875

Fig. 3. 1D tree-like structure of the sparse grid.
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wi
j ¼ f ðYi1

j1
; . . . ;YiN

jN
Þ � GNþk�1;Nðf ÞðYi1

j1
; . . . ; YiN

jN
Þ: ð69Þ
Here, we use all of the existing collocation points in the current adaptive sparse grid GNþk�1;N . This allows us to evaluate the
surplus for each point from the old index set in parallel.
� For each point in the old index set, if jwi
jjP e.

– Generate 2N neighbor points of the current active point according to Eq. (68);
– Add them to the active index set.

� Add the points in the old index set to the existing adaptive sparse grid GNþk�1;N . Now the adaptive sparse grid
becomes GNþk;N .

� k ¼ kþ 1.

(4) Calculate the mean and the variance, the PDF and if needed realizations of the solution (see Section 5.4).

5.4. Post-processing operations

Any function uð:;YÞ 2 C can now be approximated by the following reduced form from Eq. (65):
uðx;YÞ ¼
X
jij6q

X
j2Bi

wi
jðxÞ � ai

jðYÞ: ð70Þ
This is just a simple weighted sum of the value of the basis functions for all collocation points in the current sparse grid [28].
After obtaining the expression in Eq. (70), it is also easy to extract statistics [28]. The mean of the random solution can be
evaluated as follows:
E½uðxÞ� ¼
X
jij6q

X
j2Bi

wi
jðxÞ �

Z
C

ai
jðYÞdY; ð71Þ
where the probability density function qðYÞ is 1 since the stochastic space is a unit hypercube ½0;1�N . As shown in [28], the
multi-dimensional integral is simply the product of the 1D integrals which can be computed analytically. DenotingR

C ai
jðYÞdY ¼ Ii

j, we can rewrite Eq. (71) as
E½uðxÞ� ¼
X
jij6q

X
j2Bi

wi
jðxÞ � I

i
j: ð72Þ
Similarly, higher-order statistics are simple weighted sums of powers of the hierarchical surpluses.

6. The complete algorithm

The complete schematic of the stochastic multiscale procedure is illustrated in Fig. 4. The data-driven strategies (dis-
cussed in Section 4) convert the limited information available into a plausible, realistic stochastic representation of the mul-
tiscale permeability variation. The adaptive sparse grid collocation strategy is used to construct the stochastic multiscale
basis functions over all the coarse elements. Following this, the stochastic coarse-scale equations are solved for the
coarse-scale stochastic pressure and velocity.
7. Numerical examples

In this section, we apply the complete stochastic analysis framework- from data-driven model generation, the stochastic
variational mixed multiscale formulation to the adaptive solution of the resulting SPDEs. In the first example, we compare
the effect of uncertainties in the small scale permeability variations and the effect of uncertainties in large scale geological
features on the flow characteristics in a domain. In the second example, we look at the effect of localized uncertainties in
permeability and how they propagate into the complete domain.

7.1. Effect of uncertainties at different scales

The schematic of the domain of interest is shown in Fig. 5. The region is part of an outcrop (where extensive measure-
ments of permeability have been performed [62]) in Lawyer Canyon in Texas. The domain of interest is a square of length
200 ft. Flow is driven by an injection well at the left bottom corner of the domain and a production well at the top right cor-
ner. There is a low-permeability fault running across the domain. Limited information about the spatial variation in the mul-
tiscale permeability is available in the form of semi-variograms and mean permeability. Furthermore, the exact location and
characteristics of the fault are unknown. Hence both the multiscale permeability variation as well as the large scale fault
features have to be considered to be stochastic.
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7.1.1. Effect of stochastic multiscale permeability
We first investigate the effect of the stochastic multiscale permeability keeping the location of the fault fixed. The fault is

assumed to originate at (40, 100) and have a length of 100 ft and a width of 20 ft. A reduced model for the permeability is
constructed from the limited statistics available. Since in this case, the correlation structure of the permeability variation is
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Fig. 8. Two extreme realizations of the log-permeability generated from the KL expansion.
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available, we utilize the KL expansion to construct a viable stochastic model. The two-point correlation is extracted (Fig. 6
(left)) and the KL expansion is performed. Fig. 6 (right) plots the first 40 eigenvalues constructed from the KL expansion. Note
the logarithmic scale used. The first 25 eigenvalues represent about 95% of the total information (the large number of sto-
chastic dimensions required indicate that the correlation length is relatively small). The KL expansion is truncated to 25
terms and this generates a 25-dimensional input stochastic model for the permeability. The iid random variables in the
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KL expansion (note that the KL expansion is for the log-permeability field) are standard normal appropriately scaled by the
eigenvalues ð

ffiffiffiffi
ki
p

yiÞ. The total standard deviation is 37.607. The spatial mean value of the log-permeability is �0:115, which
gives a coefficient of variation of 1og k as 37:607=0:115 � 327.

Three eigenvectors utilized in the KL expansion are shown in Fig. 7. Note that the eigenvectors are in fact eigenvectors of
the log-permeability field.

Fig. 8 shows two extreme realizations of the log-permeability field constructed utilizing the KL model. Note the close to 7-
orders of magnitude variation in the permeability variation in these realizations.

The multicale permeability is given as 100	 100 fineblocks in the domain. Aggressive upgridding is utilized and a coarse-
scale discretization of 10	 10 is utilized in the stochastic variational mixed multiscale framework. The 100-fold coarse-
graining results in the representation of the system by only 320 upscaled coarse variables.

Thirty nodes of our local Linux cluster (corresponding to 120 processors) was utilized. The total computational time was
about 96 h to solve this 25þ 2 (stochastic + spatial domain) dimensional problem. Fig. 9 (left) plots the convergence of the
stochastic pressure (mean and standard deviation) with increasing number of collocation points, while Fig. 9 (right) plots the
convergence of the stochastic x-direction flux with increasing number of collocation points. For the same depth of interpo-
lation (depth of interpolation 8) about 1:3	 109 collocation points would have been required using conventional sparse grid
collocation.

Fig. 10 plots the mean values of the coarse-scale pressure and x-direction flux. Note that the pressure is stratified around
the region where the permeability fault is located.

Fig. 11 plots the standard deviation of the stochastic coarse-scale pressure and x-direction flux. The low-permeability
fault leads in preferential flow around the fault. This leads to stratification of pressure around the fault as well as negligible
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Fig. 14
Streamlines drawn on the mean stochastic coarse-scale velocity
B.
flow. This is clearly seen as the very small standard deviation in pressure in the middle of the domain where the fault is lo-
cated. Furthermore, this results in a large variation in flux around the permeability fault as can be seen in Fig. 11 (right).
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To check the accuracy of the stochastic solution, we perform comparison with the stochastic solution constructed using
Monte Carlo sampling strategies. Twenty-five-dimensional iid Gaussian random variables were generated. Each such 25-tu-
ple was used in the KLE expansion representing the stochastic permeability (Fig. 6) to generate a realization of the perme-
ability. 106 samples were utilized to compute the statistics using the Monte Carlo method. This took about 900 h using 30
nodes of our in-house Linux cluster. Fig. 12 plots the difference between the mean values of the coarse-scale pressure and x-
direction flux computed from the two methods.

Notice the difference in the mean pressure is very close to zero close to the injection well as well as on the permeability
fault. On the other hand, since the flow will preferentially try to avoid the fault (resulting in the largest deviation around this
region), there will be high variability in the x-direction flux immediately above and below the permeability fault. This leads
to the largest error occurring here as seen clearly in Fig. 12. This is also clearly illustrated in Fig. 13 which plots the difference
between the standard deviation of the coarse-scale pressure and x-direction flux computed from the two methods.

Fig. 14 plots streamlines based on the mean coarse-scale velocity distribution in the domain. The streamlines preferen-
tially circumvent the permeability barrier.

From the stochastic solution, the probability distribution function of the coarse-scale x-direction flux is plotted at two
spatial locations (120, 40) and (180, 160). The PDFs are plotted in Fig. 15. PDFs of coarse-scale pressure (not shown) also
exhibited similar trends. The stochastic permeability essentially caused a ‘smearing’ of the coarse-scale pressure and velocity
fluxes.
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7.1.2. Effect of uncertainty in large scale permeability barrier
Next we focus on the effects of uncertainty in the location of the permeability barrier on the coarse-scale stochastic pres-

sure and velocity flux. We set the permeability variation to its mean value and utilize the same 100-fold coarse-grained dis-
cretization as in the previous problem. We assume that there is 10% uncertainty in the location, length and width of the
permeability barrier. This is quantified by 4 independent uniform random variables, ðY1;Y2;Y3;Y4Þ, on the domain ½�1;1� as
xl ¼ ð0:2þ 0:05Y1Þ � 200;
yl ¼ ð0:5þ 0:05Y2Þ � 200;
Lbarrier ¼ ð0:5þ 0:05Y3Þ � 200;
Wbarrier ¼ ð0:1þ 0:05Y4Þ � 200;
where ðxl; ylÞ is the start position of the barrier, and Lbarrier , Wbarrier are the length and width of the barrier, respectively. The
variational stochastic mixed multiscale framework is utilized to solve this problem. 40 nodes of our local Linux cluster (cor-
responding to 160 processors) is utilized to solve the problem. The total computational time was about 240 min.

Fig. 16 (left) plots the convergence of the stochastic pressure with increasing number of collocation points, while Fig. 16
(right) plots the convergence of the stochastic x-direction flux with increasing number of collocation points. For the same
Fig. 17. Mean contours of the stochastic coarse-scale solution. (Left) Coarse-scale pressure, (Right) coarse-scale x-direction flux.

Fig. 18. Streamlines drawn on the mean stochastic coarse-scale velocity.



Fig. 19. Standard deviation of the stochastic coarse-scale solution. (Left) Coarse-scale pressure, (Right) coarse-scale x-direction flux.
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depth of interpolation (depth of interpolation 7) about 8000 collocation points would have been required using conventional
sparse grid collocation. The adaptive sparse grid strategy sampled the 4D stochastic space anisotropically with the random
dimension corresponding to the x-location of the permeability barrier being the most sensitive dimension.

Fig. 17 plots the mean contours of the stochastic coarse-scale pressure and flux in the x-direction. The effects of the mul-
tiscale variation in the structure of permeability is visible in the uneven pressure contours near the injection and production
wells. Furthermore, the pressure is essentially uniform close to the middle of the domain where the permeability barrier lies.
This is also seen in Fig. 17 (right), where most of the flow circumvents the location of the fault. This is even more clearly seen
in the streamlines drawn on the mean coarse-scale velocity field as shown in Fig. 18.
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Fig. 23. (Left and center) Two realizations of the coarse-scale flux (x-direction) for a 1% perturbation in the x-location of the permeability barrier, (Right)
difference between the two solutions.
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Fig. 19 plots the standard deviation contours of the coarse-scale stochastic pressure and x-direction flux. As expected,
most of the deviation in the pressure occurs close to the region of the permeability fault. Interestingly, most of the large devi-
ation region is ‘downstream’ of the location of the uncertainty – along the direction of flow. This is also seen in Fig. 19 (right)
where the region of large standard deviation is on either side of the permeability barrier and extends along the flow direction
downstream towards the production well on the top right.

From the stochastic solution, the probability distribution function of the coarse-scale x-direction flux is plotted at two
spatial locations. The first point (120, 40) has a relatively large standard deviation in the flux, while the second point
(100, 60) has a smaller standard deviation. The PDFs are plotted in Fig. 20. Notice that the PDFs at both points have several
peaks (in contrast with the previous case) pointing to the possibility of mode shifts existing. In particular, Fig. 20 (right) is the
PDF of a point that lies very close to the permeability barrier and it clearly shows up to 10 distinct peaks. It appears that
small variations in the location of the peak results in significant changes in the flow patterns leading to the multi-modal
structure of the PDF.

We investigate this possibility by reducing the problem to its most sensitive stochastic dimension. As stated earlier, the
adaptive sparse grid collocation algorithm preferentially refines the stochastic solution along regions of steep variations and
discontinuities. Most of the refinement proceeded along the dimension that characterized the uncertainty in the x-location of
the permeability barrier (i.e. Y1). We solved a problem with this as the only input stochastic variable. Fig. 21 plots the evo-
lution of the adaptive grid. Notice that after the 8th level of interpolation, most of the refinement is concentrated at five
points. This implies the definite existence of steep gradients or discontinuities around these points in stochastic space. This
is clearly seen in Fig. 22, where the PDF of the coarse-scale flux in the x-direction is plotted at two spatial points. The PDFs in
both cases consist of five sharp peaks.
Fig. 25. The multiscale log-permeability distribution in the domain. The axes are scaled (1 unit = 50 ft).
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In Fig. 23, we illustrate this mode shift behavior by plotting two realizations of the coarse-scale stochastic flux (x-direc-
tion). These two realizations correspond to two points in stochastic space that are separated by 1% (Y1 ¼ 0:295 and 0.305).
This corresponds to a mode shift located at Y1 ¼ 0:30 as seen in Fig. 21. The flow structure close to the permeability barrier is
significantly different for the two cases.

In comparison with the uncertainty due to multiscale permeability variation, even a small uncertainty in the location of
large scale structures results in significant variabilities in the flow patterns.

7.2. Effect of localized uncertainties

In this second example, we look at the effect of localized uncertainties in permeability and how they propagate into the
complete domain. A schematic of the domain is shown in Fig. 24. The region consists of a 250	 150 ft2 domain where the
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Fig. 27. Convergence of the stochastic solution (mean and standard deviation) with increasing number of collocation points. (Left) Stochastic coarse-scale
pressure, (Right) stochastic coarse-scale x-direction flux.

Fig. 28. Mean contours of the stochastic coarse-scale solution. (Left) Coarse-scale pressure, (Right) coarse-scale x-direction flux.

Fig. 29. Standard deviation of the stochastic coarse-scale solution. (Left) Coarse-scale pressure, (Right) coarse-scale x-direction flux.
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multiscale permeability is given in 1 ft2 blocks. An injection well is located at the bottom left corner of the domain while a
production well is placed at the top right corner of the domain. No flow boundary conditions are enforced on all the four
boundaries. The full-scale discretization of the domain corresponds to a 250	 150 element triangulation.

The permeability in the domain is shown in Fig. 25. The deterministic permeability is taken from the 10th SPE compar-
ative project [63]. The permeability shows variation of five orders of magnitude. Furthermore, there is a localized region of
uncertain permeability in the central portion of the domain, corresponding to a 50	 50 ft2 domain. Aggressive coarse-scal-
ing is performed at the complete domain which is characterized using a coarse 50	 30 element discretization.

We are given a finite number of snapshots of plausible permeability distributions in the uncertain permeability block.
Based on the number of available snapshots, we consider two cases (a) for small number of snapshots, a linear model reduc-
tion strategy is utilized to construct a data-driven model of the multiscale permeability in the domain, and (b) if a large num-
ber of snapshots are available, a non-linear model reduction strategy is utilized.

7.2.1. Small number of snapshots
In this case, a data-set containing 85 plausible permeability distributions in the uncertain part of the domain is available.

Based on the discussion in Section 4.2.1, the covariance matrix C (see Eq. (54)) is constructed using these 85 permeability
distributions and the eigenvalue problem solved. Fig. 26 plots the eigen-spectrum of the covariance matrix. The first six
eigenmodes accurately represent the variability in the given data-set. These eigen-modes are utilized to construct the cor-
responding low-dimensional representation of the stochastic permeability distribution in the central block of the domain.
The dimensionality of the representation is 6.
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Fig. 31. Probability distribution functions of the coarse-scale pressure (Left) and flux (x-direction) (Right) for a point in the uncertain domain.
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Twelve nodes of our local Linux cluster (corresponding to 48 processors) was utilized. The total computational time was
about 24 h to solve this 6þ 2 (stochastic + spatial domain) dimensional problem. Fig. 27 (left) plots the convergence of the
stochastic pressure (mean and standard deviation) with increasing number of collocation points, while Fig. 27 (right) plots
the convergence of the stochastic x-direction flux with increasing number of collocation points.

Fig. 28 plots the mean contours of the stochastic coarse-scale pressure and flux in the x-direction. Note the highly den-
drite-like structure of the x-direction flux. Due to the large variation in the permeability, the flow tries to find the path with
the largest permeability resulting in this dendrite-like structure.

Fig. 29 plots the standard deviation contours of the coarse-scale stochastic pressure and x-direction flux. Upstream of the
uncertain permeability block, the standard deviation of the coarse-scale pressure and velocity are both negligible. Most of
the deviation in the pressure occurs in the uncertain domain with its effects felt downstream of the uncertain domain.
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Fig. 32. Plot of the length functional of the MST of the graph G for various sample sizes. The intrinsic dimension is related to the slope of the graph.

Fig. 33. Mean contours of the stochastic coarse-scale solution. (Left) Coarse-scale pressure, (Right) coarse-scale x-direction flux.

Fig. 34. Standard deviation of the stochastic coarse-scale solution. (Left) Coarse-scale pressure, (Right) coarse-scale x-direction flux.



616 B. Ganapathysubramanian, N. Zabaras / Journal of Computational Physics 228 (2009) 591–618
The velocity flux has maximum deviation in the region of uncertainty and the deviation rapidly decays in the rest of the
domain.

From the stochastic solution, the probability distribution function of the coarse-scale pressure and x-direction flux is plot-
ted at two spatial locations. The first point (50, 50) is upstream of the localized uncertain region, while the second point (125,
75) is in the region of uncertain permeability. The PDFs are plotted in Figs. 30 and 31. For the point upstream, the probability
distributions are peaked and have a very small range of variation. In comparison, the point in the region of uncertainty has a
significantly larger range of variability.

7.2.2. Large number of snapshots
In this case, a data-set containing 1500 plausible permeability distributions in the uncertain part of the domain is avail-

able. Based on the discussion in Section 4.2.2, the neighborhood graph G is constructed using these 1500 permeability dis-
tributions. Following this, the geodesic distance matrix is computed. The BHH theorem [34] is used to compute the intrinsic
dimensionality of the dataset. The dimensionality is related to the slope of the length functional of the minimal spanning
graph (MST) of the neighborhood graph G of the dataset (see [34]). Fig. 32 plots the variation in the length functional of
the MST. The optimal dimensionality was estimated to be d ¼ 5. The corresponding low-dimensional representation of
the stochastic permeability distribution in the central block of the domain (Eq. (56)) is constructed.

Fifty nodes of our local Linux cluster (corresponding to 200 processors) was utilized. The total computational time was
about 12 h to solve this 5þ 2 (stochastic + spatial domain) dimensional problem.

Fig. 33 plots the mean contours of the stochastic coarse-scale pressure and flux in the x-direction. Comparing this with
Fig. 28, it is apparent that the results are quite similar to those obtained by generating a data-driven model utilizing a much
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Fig. 35. Probability distribution functions of the coarse-scale pressure (left) and flux (x-direction) (right) for a point upstream of the uncertainty.
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lower amount of initial information (using the linear model generation strategy). Limited amount of data is enough to con-
struct a stochastic model for the permeability that results in fairly accurate modeling of the mean behavior. However, addi-
tional data results in substantial improvements in higher-order statistics.

Fig. 34 plots the standard deviation contours of the coarse-scale stochastic pressure and x-direction flux. The utilization in
more information (larger number of snapshots to build the input model) results in an overall reduction in the standard devi-
ation in the domain, though the general trends are similar (compare Figs. 29 and 34).

From the stochastic solution, the probability distribution function of the coarse-scale pressure and x-direction flux is plot-
ted at the same two spatial locations. The PDFs are plotted in Figs. 35 and 36. For the point upstream, the probability dis-
tributions are peaked and have a very small range of variation. In comparison, the point in the region of uncertainty has
a significantly larger range of variability. Comparing Fig. 36 with Fig. 31 illustrates the effect of the incorporation of more
data into the construction of the stochastic input model.

8. Conclusions

We have extended the state-of-art in deterministic multiscale modeling of flow through heterogeneous media to a sto-
chastic multiscale framework. We accomplish this in three steps. In the first step, a variational stochastic mixed multiscale
formulation is developed to incorporate the effects of stochastic subgrid-scale permeability. The input to this is a finite-
dimensional representation of the stochastic permeability that is constructed from limited permeability information in
the form of snapshots or statistics. We utilize various data-driven model reduction strategies to embed this limited informa-
tion into viable stochastic input models of the permeability. The resulting multiscale SPDEs are solved utilizing an adaptive
sparse grid collocation strategy. We showcase the complete formulation through realistic large scale applications of flow
through heterogeneous random media. This is (to the best knowledge of the authors) the first instance of a stochastic var-
iational multiscale treatment of flow through random heterogeneous media. We are currently utilizing this framework in
multiple areas: The first involves performing estimation of multiscale permeability distributions as well as contaminant
detection problems. This multiscale strategy towards estimation and inverse problems offers two advantages (1) it provides
a computationally attractive framework to hierarchically estimate spatial property variations and (2) it also naturally links
coarse-scale integrated responses like flow, contaminant with the lower scale features via the stochastic multiscale basis
functions. The robustness of this technique is yet to be investigated and will be the focus of a forthcoming publication.
The second application of this development is to incorporate stochastic model reduction strategies to construct low-com-
plexity surrogate representations of the stochastic multiscale equations for accelerated analysis.
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